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Quantum Cloning of an Unknown Two-Particle
Entangled State with Assistance
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We propose a protocol where one can realize quantum cloning of an unknown two-
particle entangled state and its orthogonal-complement state with assistance offered
by a state preparer. The first stage of the protocol requires usual teleportation using
a (or two) four-particle entangled state(s) as quantum channel(s). In the second stage
of the protocol, with the assistance (through a two-particle projective measurement)
of the preparer, the perfect copies and complement copies of an unknown state can be
produced.

KEY WORDS: quantum cloning; two-particle entangled state; two-particle projective
measurement.

1. INTRODUCTION

Quantum entanglement has generated much interest in the quantum infor-
mation processing such as quantum teleportation (Bennett et al., 1993), quantum
dense coding (Bennett and Wiesner, 1992), remote state preparation (Pati, 2001),
and quantum key distribution (Ekert, 1991). In recent years, the possibility of
cloning quantum states approximately has attracted much attention. A quantum
state can not be cloned exactly because of the no-cloning theorem (Dieks, 1982;
Wootters and Zerek, 1982). However, quantum cloning approximately is neces-
sary in quantum information (Nielsen and Chuang, 2000). Though exact cloning is
not possible, in the literature various cloning machines have been proposed which
operate either in a deterministic or probabilistic way. Universal quantum cloning
machines was originally addressed by Bužek and Hillery (1996). The deterministic
state-dependent cloning machine, proposed firstly by Hillery and Bužek (1997), is
designed to generate approximate clones of states belonging to a finite set. Gisin
and Massar (1997), and Bruβ et al. (1998) constructed the universal qubit cloner
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that maximizes the local fidelity. The probabilistic cloning machine was first con-
sidered by Duan and Guo (1998) using a general unitary-reduction operation with
a postelection of the measurement results. Murao et al. (1999) proposed the quan-
tum telecloning process combining quantum teleportation and optimal quantum
cloning from one input to M outputs. The other category of quantum cloning
machines were developed by some authors (Bruβ and Macchiavello, 2001; Feng
et al., 2002; Qiu, 2002; Zou et al., 2003).

Recently, Pati (2000) proposed a scheme where one can produce perfect
copies and orthogonal-complement copies of an arbitrary unknown state with
minimal assistance from a state preparer. This scheme realizes perfect cloning
and complementing of an unknown state using resources such as entangled state,
Bell-state measurement, single-particle von Neumann measurement, and classical
communication. The purpose of this paper is to give a protocol that can produce
perfect copies and orthogonal-complement copies of an unknown two-particle
entangled state via a four-particle entangled state as the quantum channel. Differ-
ent from the previous protocol using a single-particle von Nenmann orthogonal
measurement (Pati, 2000), here we will realize the assisted cloning by using a
two-particle projective measurement consisting of a set of nonmaximally entan-
gled basis vectors. In addition, we also consider the assisted cloning via two
four-particle entangled states as the quantum channels.

2. ASSISTED CLONING OF A TWO-PARTICLE ENTANGLED
STATE BY A FOUR-PARTICLE GHZ STATE

Suppose Alice has an input two-particle entangled state |φ〉12 = α|00〉12 +
β|11〉12 from a state preperer Victor, with α as a real number and β as a complex
number, and |α|2 + |β|2 = 1. Assume Alice and Bob share a four-particle entan-
gled state of the type from Greenberger–Horne–Zeilinger (GHZ) (Greenberger
et al., 1989) give by

|φ〉3456 = 1√
2

(|0011〉3456 + |1100〉3456). (1)

Here, we assume that particles 3 and 4 belong to Alice, while particles 5 and
6 belong to Bob. The input state |φ〉12 is unknown to both Alice and Bob. The
initial state of the combined system is

|�〉 = |φ〉12 ⊗ |φ〉3456

= |�(1)〉 + |�(2)〉, (2)

where

|�(1)〉 = 1

2
√

2
|�±〉13|�±〉24(α|11〉 ± ±β|00〉)56,
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|�(2)〉 = 1

2
√

2
|�±〉13|�±〉24(α|00〉 ± ±β|11〉)56, (3)

where |�±〉ij and |�±〉ij are the Bell states of particles i and j

|�±〉ij = 1√
2

(|00〉 ± |11〉)ij ,

|�±〉ij = 1√
2

(|01〉 ± |10〉)ij . (4)

In Equation (3), the notes “±” in the column from right to left correspond
to the Bell state of particles (1,3) and (2,4), respectively. Assume Alice performs
Bell-state measurements on particles (1,3) and (2,4), respectively, and if the mea-
surement outcome of Alice is |�+〉13|�−〉24 (the probability of this result is only
1/8), then the resulting six-particle state can be written as

|�−〉24〈�−|�+〉13〈�+|�〉 = 1

2
√

2
|�+〉13|�−〉24(α|00〉 − β|11〉)56. (5)

After these measurements, Alice sends the measurement result to Bob through
a classical channel. According to the measure outcome of Alice, Bob will operate
a unitary transformation I5 ⊗ (σz)6 on Equation (5), and to get the original state
from particles 5 and 6.

To create either a copy or an orthogonal-complement copy of the un-
known two-particle state |φ〉, Alice needs assistance of Victor. According to
the projection postulate of quantum mechanics, if Alice applies projectors
|�−〉24〈�−|�+〉13〈�+| into the combined state |�〉, the state of particles 1, 2, 3,
and 4 will collapse in the entangled state |�+〉13|�−〉24 (see Equation (5)). Alice
sends particles 1 and 2 to Victor and keeps particles 3 and 4 in her possession.
Since Victor knows the parameters α and β of original state |φ〉12 completely, he
carries out a two-particle projective measurement on the particles 1 and 2 in a set
of mutually orthogonal basis vectors {|ϕ〉, |ϕ⊥〉, |ψ〉, |ψ⊥〉}, which is given by

|ϕ〉12 = α|00〉12 + β|11〉12,

|ϕ⊥〉12 = β∗|00〉12 − α|11〉12,

|ψ〉12 = α|01〉12 + β|10〉12, (6)

|ψ⊥〉12 = β∗|01〉12 − α|10〉12.

The earlier four nonmaximally entangled basis states {|ϕ〉, |ϕ⊥〉, |ψ〉, |ψ⊥〉}
are related to the computation basis vectors {〈00|, |01〉, |10〉, |11〉}, and form a
complete orthogonal basis in a four-dimensional Hilbert space. We find that the
|ϕ〉12 is equal to |φ〉12 and the basis |ϕ⊥〉12 is equal to |φ⊥〉12, where |φ⊥〉12 =
β∗|00〉12 − α|11〉12 is the orthogonal-complement state to |φ〉12. Moreover,
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|ψ〉12 = (I1 ⊗ (σx)2)|φ〉12 and |ψ⊥〉12 = (I1 ⊗ (σx)2)|φ⊥〉12 is the orthogonal-
complement state to |ψ〉12 (the σz and σx given earlier are Pauli operators).
Thus, the entangled state |�+〉13|�−〉24 in the basis {|ϕ〉, |ϕ⊥〉, |ψ〉, |ψ⊥〉} can
be rewritten as

|�+〉13|�−〉24 = 1

2
[|ϕ〉12(α|11〉34 − β∗|00〉34) + |ϕ⊥〉12(α|00〉34 + β|11〉34)

|ψ〉12(−α|10〉34 + β∗|01〉34) + |ψ⊥〉12(α|01〉34 + β|10〉34)].

(7)

If the result of Victor’s measurement on the two particle 1 and 2 is |ϕ⊥〉12,
Equation (5) can be written as

|ϕ⊥〉12〈ϕ⊥|�−〉24〈�−|�+〉13〈�+|�〉

= 1

4
√

2
|ϕ⊥〉12 ⊗ |φ〉34 ⊗ (I5 ⊗ (σz)6)|φ〉56. (8)

Victor sends the measurement outcome to Alice through a classical channel
with two classical bits, then Alice knows that the state of her particles 3 and 4 has
been found in the original state |φ〉34 = α|00〉34 + β|11〉35, which is just a copy of
the state |φ〉12. If the result of Victor is |ϕ〉12, then two cbits from Victor to Alice
would yield a complement state given by

|ϕ〉12〈ϕ|�−〉24〈�−|�+〉13〈�+|�〉

= 1

4
√

2
|ϕ〉12 ⊗ |φ⊥〉34 ⊗ (I5 ⊗ (σz)6)|φ〉56. (9)

It is clear from Equation (9) that Alice gets a complement copy of the
unknown state. From Equation (7), if the results of Victor are |ψ〉12 and |ψ⊥〉12,
Equation (5) can be written as, respectively

|ψ〉12〈ψ |�−〉24〈�−|�+〉13〈�+|�〉

= 1

4
√

2
|ψ〉12 ⊗ (I3 ⊗ (σx)4)|φ⊥〉34 ⊗ (I5 ⊗ (σz)6)|φ〉56, (10)

|ψ⊥〉12〈ψ⊥|�−〉24〈�−|�+〉13〈�+|�〉

= − 1

4
√

2
|ψ⊥〉12 ⊗ (I3 ⊗ (σx)4)|φ〉34 ⊗ (I5 ⊗ (σz)6)|φ〉56. (11)

From Equations (10) and (11), one can see that Alice gets a copy and a
complement copy (all are up to doing a rotation operation) of the unknown state,
respectively.

In the process of teleportation, if the Alice’s measurement outcomes are other
seven entangled states |�±〉13|�±〉24, |�±〉13|�+〉24, and |�−〉13|�−〉24, applying
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the same analysis method as the one mentioned earlier, Alice will obtain a copy
(or complement copy) of the unknown state at her place.

3. ASSISTED CLONING USING TWO FOUR-PARTICLE
ENTANGLED GHZ STATES

Now, we will generalize the previous scheme for producing more copies or
complement copies using two four-particle GHZ states. Suppose that the unknown
input state of Alice from Victor is still the two-particle entangled state |φ〉12 =
α|00〉12 + β|11〉12. The two four-particle GHZ states, as the quantum channels,
are given by

|φ〉3456 = 1√
2

(|0011〉 + |1100〉)3456,

|φ〉789,10 = 1√
2

(|0011〉 + |1100〉)789,10. (12)

Here Alice possesses particles 3 and 4, Bob possesses particles 5, 7, 8 and 9,
and Carla possesses particles 6 and 10. The input state |φ〉12 is unknown to Alice,
Bob, and Carla. The combined 10-particle state is expressed as

|�〉 = |φ〉12 ⊗ |φ〉3456 ⊗ |φ〉789,10

= |�(1)〉 + |�(2)〉, (13)

where|�(1)〉 = 1

4
|�±〉13|�±〉24

(α|110011〉 + α|111100〉 ± ±β|000011〉 ± ±β|001100〉)56789,10,

(14)

|�(2)〉 = 1

4
|�±〉13|�±〉24

(α|000011〉 + α|001100〉 ± ±β|110011〉 ± ±β|111100〉)56789,10

(15)

In Equations (14) and (15), the notes “±” in the column from right to left
correspond to the Bell state of particles (1,3) and (2,4), respectively.

Now let Alice carries out Bell-state measurements on her particles (1,3)
and (2,4), respectively. If the result of Alice’s measurement is |�+〉13|�−〉24 (the
probability of this result is only 1/8), then the resulting state will be

|�−〉24〈�−|�+〉13〈�+|�〉 = 1

4
|�+〉13|�−〉24(α|000011〉 + α|001100〉

−β|110011〉 − β|111100〉)56789,10 = |�′
(1)〉 + |�′

(2)〉,
(16)
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where
∣∣�′

(1)

〉 = 1

8
|�+〉13|�−〉24|�±〉57|�±〉89(α|01〉 − ± ± β|10〉)6,10, (17)

∣∣�′
(2)

〉 = 1

8
|�+〉13|�−〉24|�±〉57|�±〉89(±α|00〉 − ±β|11〉)6,10. (18)

In Equations (17) and (18), the notes “±” in the column from right to left
correspond to the Bell state of particles (5,7;8,9) and (8,9;5,7), respectively. After
the measurements given earlier, Alice sends her resule via a classical channel with
four bits of information to both Bob and Carla. In the next step, Bob performs
another Bell-state measurements on his particles (5,7) and (8,9), respectively. If the
result of Bob’s measurement is |�−〉57|�+〉89, the resulting state (the probability
of this result is only 1/64) will be written as

|�+〉89〈�+|�−〉57〈�−|�−〉24〈�−|�+〉13〈�+|�〉

= 1

8
|�+〉13|�−〉24|�−〉57|�+〉89|φ〉6,10. (19)

From Equation (19), one can see that the state of particles 6 and 10 of Carla
is found to be in the original state.

In the second stage of our protocol, Alice and Bob send particles (1,2) and
(5,8), respectively, to Victor. When Victor gets the particles (1,2) and (5,8), he
chooses to measure the states in the basis {|ϕ〉ij , |ϕ⊥〉ij , |ψ〉ij , |ψ⊥〉ij }, which is
given by

|ϕ〉ij = α|00〉ij + β|11〉ij ,
|ϕ⊥〉ij = β∗|00〉ij − α|11〉ij ,
|ψ〉ij = α|01〉ij + β|10〉ij , (20)

|ψ⊥〉ij = β∗|01〉ij − α|10〉ij ,
where i, j = 1, 2 or 5, 8. In the new basis, the total state can be written as

|�+〉89〈�+|�−〉57〈�−|�−〉24〈�−|�+〉13〈�+|�〉
= 1

32 [|ϕ〉12(α|11〉34 − β∗|00〉34) + |ϕ⊥〉12(α|00〉34 + β|11〉34)

+|ψ〉12(−α|10〉34 + β∗|01〉34) − |ψ⊥〉12(α|01〉34 + β|10〉34)] (21)

× [|ϕ〉58(α|11〉79 − β∗|00〉79) + |ϕ⊥〉58(α|00〉79 + β|11〉79)

+|ψ〉58(α|10〉79 − β∗|01〉79) + |ψ⊥〉58(α|01〉79 + β|10〉79)]|φ〉6,10.

Assume Victor first carries out a two-particle projective measurement on the
particles (1,2) and then on particles (5,8) and in both cases let the results be |ϕ⊥〉12

and |ϕ⊥〉58. Then Victor sends the classical information (two bits) to Alice and
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(two bits) to Bob. According to the information of Victor, Alice and Bob can find
that their particles (3,4) and (7,9) are in the unknown state, respectively. Thus, the
final state after two-particle projective measurements is given by

|ϕ⊥〉12〈ϕ⊥|ϕ⊥〉58〈ϕ⊥|�+〉89〈�+|�−〉57〈�−|�−〉24〈�−|�+〉13〈�+|�〉
= 1

32 |ϕ⊥〉12 ⊗ |φ〉34 ⊗ |ϕ⊥〉58 ⊗ |φ〉79 ⊗ |φ〉6,10. (22)

From Equation (22), it is clear that Alice, Bob, and Carla each get a perfect
copy of the unknown state. If Victor’s outcome for particles (1,2) and (5,8) are
|ψ〉12 and |ψ〉58, the final state is given by

|ψ〉12〈ψ |ψ〉58〈ψ |�+〉89〈�+|�−〉57〈�−|�−〉24〈�−|�+〉13〈�+|�〉
= − 1

32 |ψ〉12 ⊗ (I3 ⊗ (σx)4)|φ⊥〉34 ⊗ |ψ〉58 ⊗ (I7 ⊗ (σx)9)|φ⊥〉79 ⊗ |φ〉6,10.

(23)

After sending two classical bits to Alice and two to Bob from Victor, Alice
knows that her state of particles 3 and 4 has been found in the complement
copy of the unknown state (up to a rotation operator), and Bob gets a comple-
ment copy for his particles 7 and 9 (up to a rotation operator, too), and Carla
gets the copy of the unknown state. If what Victor measure is another outcome
for particles (1,2) and (5,8), by Equation (21) Alice and Bob can acquire a per-
fect copy or a complement copy (up to a rotation operator) of the unknown
state.

4. CONCLUSION

We have proposed a protocol that can produce perfect copies or orthogonal-
complement copies of an arbitrary unknown two-particle entangled state, via
quantum and classical channel, with assistance. Our protocol requires resources
such as a four-particle GHZ state (or two four-particle GHZ states) as quantum
channel(s), Bell-state measurement, classical communication, and two-particle
projective measurement. This protocol includes two stages. The first stage of
the protocol requires usual teleportation. In the second stage, Victor (a preparer
of state) will perform two-particle projective measurements on particles which
from Alice and Bob. According to information from Victor, Alice and Bob can
acquire either a perfect copy or an orthogonal-complement copy of unknown
state.
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